Course Type	Course Code	Name of the Course	L	T	P	Credits
DE	NESD504	Environmental Biotechnology	3	0	0	3

Course Objectives

• Provides comprehensive knowledge of state-of-the-art biotechnological processes for wastewater treatment, landfilling, sludge treatment, bioremediation, bioenergy production and metal recovery.

Learning Outcomes

Upon successful completion of this course, students will be able to:

 Provide biotechnological solutions to address environmental issues including pollution, recovery of mineral resource, renewable energy and water recycling.

Unit No.	Topics to be covered	Lecture Hours	Learning outcomes
1.	Genetic Engineering: Cell genetic material; Nucleic acid-based methods of analysis: Extraction of nucleic acids from environmental samples, Polymerase chain reaction (PCR), Real- time PCR, PCR detection of specific and universal genes.	6	To gain elementary idea about important biotechnological processes such as PCR
2.	Recombinant DNA technology: Safety, social, moral and ethical considerations; Applications of recombinant technology for enhanced biodegradation, organisms with novel catabolic capabilities; Detection of pathogens and parasites in environmental samples using nucleic acid probes and PCR.	10	To gain knowledge about fundamentals and applications of recombinant DNA technology.
3.	Ex-Situ and in-situ bioremediation: Phytoremediation; Ex- situ and in-situ biological decontamination of groundwater; Landfill leachate; bio-treatment of Industrial Wastewater and Surface Waters; Microbial degradation of contaminants in gas phase.	11	To understand concepts of popular biotechnological processes such as bio-remediation and microbial degradation.
4.	Environmental applications of biological processes: Biobleaching in pulp and paper industries, bioleaching of ores for recovery of precious metals, Biological desulphurization of coal, Biological fuel generation (bio-hydrogen, bio-methanation and alcohol production), bio-insecticides, cleaner biotechnologies in oil and agro-industries.	11	To get a clear understanding of the applications of biotechnology for real life environmental problems.
5.	Biosensors: Use of immobilized cells and enzymes as biosensors.	4	To gain knowledge about biosensors and their application in environmental monitoring.
		42	

Text Books:

1. Environmental Biotechnology: Principles and Applications, B. E. Rittmann and P. L. McCarty, 2001.

Reference books:

- 1. B. Bhattacharya and R. Banerjee, Environmental Biotechnology, 2008.
- 2. Smith, J.E. (2004) Biotechnology, 3rd Edition, Cambridge University Press, UK.